Miscellaneous Proofs Related to Conjugates and Modulus
These are some beginner level proofs related to the applications and properties of complex number, their conjugates, and their moduli. Use your skills to simplify complex numbers and perform operations on them to bring each proof to its conclusion.
Press start to begin each proof. Choose the correct option from the given options. Click on the ? at the end of a statement to see the explanation for that step. Get all steps correct for all derivations to pass the stage.
Prove That β£zβ£=β£βzβ£
SKIP
z=a+bi
β£zβ£=?
ββ£zβ£=a2+b2β[1]
βz=?
βz=βaβbi
β£βzβ£=?
ββ£βzβ£=(βa)2+(βb)2β
β£βzβ£=a2+b2β[2]
SKIP
β΄β£zβ£=β£βzβ£fromΒ [1]Β andΒ [2])
Prove That β£zβ£=β£zβ£
SKIP
z=a+bi
β£zβ£=?
ββ£zβ£=a2+b2β[1]
z=?
z=aβbi
β£zβ£=?
ββ£zβ£=a2+(βb)2β
β£zβ£=a2+b2β[2]
SKIP
β΄β£zβ£=β£zβ£fromΒ [1]Β andΒ [2]
Prove That zz=β£zβ£2
SKIP
z=a+bi
z=?
z=aβbi
zβ z=?
zβ z=(a+bi)(aβbi)
zβ z=a2βb2i2
zβ z=a2+b2[1]
β£zβ£=?
ββ£zβ£=a2+b2β[1]
SKIP
Squaring both sides
β£zβ£2=?
ββ£zβ£2=a2+b2[2]
SKIP
β΄zβ z=β£zβ£2fromΒ [1]Β andΒ [2]
Prove That (z2βz1ββ)β=z2ββz1βββ
SKIP
z1β=a+bi,z2β=c+di
SKIP
Let's find z2βz1ββ
z2βz1ββ=c+dia+biβ
=c+dia+biββ cβdicβdiβ
=(c+di)(cβdi)(a+bi)(cβdi)β
=c2βd2i2acβbdi2+bciβadiβ
=c2+d2(ac+bd)+(bcβad)iβ
=c2+d2ac+bdβ+ic2+d2bcβadβ
SKIP
L.H.S=(z2βz1ββ)β
=c2+d2ac+bdβ+ic2+d2bcβadββ
=c2+d2ac+bdββic2+d2bcβadβ=L.H.S[1]
SKIP
Moving to the right hand side.
SKIP
R.H.S=z2ββz1βββ
=cβdiaβbiβ
=cβdiaβbiββ c+dic+diβ
=(cβdi)(c+di)(aβbi)(c+di)β
=c2βd2i2acβbdi2+adiβbciβ
=c2+d2(ac+bd)+i(adβbc)β
=c2+d2ac+bdβ+ic2+d2adβbcβ
=c2+d2ac+bdββic2+d2bcβadβ=R.H.S[2]
SKIP
From [1] and [2]
SKIP
β(z2βz1ββ)β=z2ββz1βββ
Prove That β£z1βz2ββ£=β£z1ββ£β£z2ββ£
SKIP
z1β=a+bi,z2β=c+di
SKIP
We want to prove that β£z1βz2ββ£=β£z1ββ£β£z2ββ£
SKIP
L.H.S=β£z1βz2ββ£
First, let's find z1βz2β=(a+bi)(c+di)
=ac+adi+bci+bdi2
=ac+adi+bciβbd
=(acβbd)+(ad+bc)i
β£z1βz2ββ£=β£(acβbd)+(ad+bc)iβ£
=(acβbd)2+(ad+bc)2β
=a2c2β2abcd+b2d2+a2d2+2abcd+b2c2β
=a2c2+b2d2+a2d2+b2c2β
=a2c2+a2d2+b2c2+b2d2β
=a2(c2+d2)+b2(c2+d2)β
=(a2+b2)(c2+d2)β
=a2+b2ββ c2+d2β=L.H.S[1]
SKIP
Now let's evaluate the right hand side.
SKIP
R.H.S=β£z1ββ£β£z2ββ£
=β£a+biβ£β£c+diβ£
=a2+b2ββ c2+d2β
=a2+b2ββ c2+d2β=R.H.S[2]
SKIP
From [1] and [2]
SKIP
ββ£z1βz2ββ£=β£z1ββ£β£z2ββ£
SKIP
This completes the proof that the modulus of a product equals the product of the moduli.