Miscellaneous Proofs Related to Conjugates and Modulus
These are some beginner level proofs related to the applications and properties of complex number, their conjugates, and their moduli. Use your skills to simplify complex numbers and perform operations on them to bring each proof to its conclusion.
Press start to begin each proof. Choose the correct option from the given options. Click on the ? at the end of a statement to see the explanation for that step. Get all steps correct for all derivations to pass the stage.
Prove That ∣z∣=∣−z∣
SKIP
z=a+bi
∣z∣=?
⇒∣z∣=a2+b2[1]
−z=?
−z=−a−bi
∣−z∣=?
⇒∣−z∣=(−a)2+(−b)2
∣−z∣=a2+b2[2]
SKIP
∴∣z∣=∣−z∣from [1] and [2])
Prove That ∣z∣=∣z∣
SKIP
z=a+bi
∣z∣=?
⇒∣z∣=a2+b2[1]
z=?
z=a−bi
∣z∣=?
⇒∣z∣=a2+(−b)2
∣z∣=a2+b2[2]
SKIP
∴∣z∣=∣z∣from [1] and [2]
Prove That zz=∣z∣2
SKIP
z=a+bi
z=?
z=a−bi
z⋅z=?
z⋅z=(a+bi)(a−bi)
z⋅z=a2−b2i2
z⋅z=a2+b2[1]
∣z∣=?
⇒∣z∣=a2+b2[1]
SKIP
Squaring both sides
∣z∣2=?
⇒∣z∣2=a2+b2[2]
SKIP
∴z⋅z=∣z∣2from [1] and [2]
Prove That (z2z1)=z2z1
SKIP
z1=a+bi,z2=c+di
SKIP
Let's find z2z1
z2z1=c+dia+bi
=c+dia+bi⋅c−dic−di
=(c+di)(c−di)(a+bi)(c−di)
=c2−d2i2ac−bdi2+bci−adi
=c2+d2(ac+bd)+(bc−ad)i
=c2+d2ac+bd+ic2+d2bc−ad
SKIP
L.H.S=(z2z1)
=c2+d2ac+bd+ic2+d2bc−ad
=c2+d2ac+bd−ic2+d2bc−ad=L.H.S[1]
SKIP
Moving to the right hand side.
SKIP
R.H.S=z2z1
=c−dia−bi
=c−dia−bi⋅c+dic+di
=(c−di)(c+di)(a−bi)(c+di)
=c2−d2i2ac−bdi2+adi−bci
=c2+d2(ac+bd)+i(ad−bc)
=c2+d2ac+bd+ic2+d2ad−bc
=c2+d2ac+bd−ic2+d2bc−ad=R.H.S[2]
SKIP
From [1] and [2]
SKIP
⇒(z2z1)=z2z1
Prove That ∣z1z2∣=∣z1∣∣z2∣
SKIP
z1=a+bi,z2=c+di
SKIP
We want to prove that ∣z1z2∣=∣z1∣∣z2∣
SKIP
L.H.S=∣z1z2∣
First, let's find z1z2=(a+bi)(c+di)
=ac+adi+bci+bdi2
=ac+adi+bci−bd
=(ac−bd)+(ad+bc)i
∣z1z2∣=∣(ac−bd)+(ad+bc)i∣
=(ac−bd)2+(ad+bc)2
=a2c2−2abcd+b2d2+a2d2+2abcd+b2c2
=a2c2+b2d2+a2d2+b2c2
=a2c2+a2d2+b2c2+b2d2
=a2(c2+d2)+b2(c2+d2)
=(a2+b2)(c2+d2)
=a2+b2⋅c2+d2=L.H.S[1]
SKIP
Now let's evaluate the right hand side.
SKIP
R.H.S=∣z1∣∣z2∣
=∣a+bi∣∣c+di∣
=a2+b2⋅c2+d2
=a2+b2⋅c2+d2=R.H.S[2]
SKIP
From [1] and [2]
SKIP
⇒∣z1z2∣=∣z1∣∣z2∣
SKIP
This completes the proof that the modulus of a product equals the product of the moduli.