Miscellaneous Proofs Related to Conjugates and Modulus

These are some beginner level proofs related to the applications and properties of complex number, their conjugates, and their moduli. Use your skills to simplify complex numbers and perform operations on them to bring each proof to its conclusion.

Press start to begin each proof. Choose the correct option from the given options. Click on the ? at the end of a statement to see the explanation for that step. Get all steps correct for all derivations to pass the stage.

Prove That z=z|z| = |-z|

SKIP

z=a+biz = a + bi

z=?|z| = ?

z=a2+b2[1] \Rightarrow |z| = \sqrt{a^2 + b^2} \quad [1]

z=?-z = ?

z=abi-z = -a - bi

z=?|-z| = ?

z=(a)2+(b)2\Rightarrow |-z| = \sqrt{(-a)^2 + (-b)^2}

z=a2+b2[2]|-z| = \sqrt{a^2 + b^2} \quad [2]

SKIP

z=zfrom [1] and [2]) \therefore |z| = |-z| \quad \text{from [1] and [2])}

Prove That z=z|z| = |\overline{z}|

SKIP

z=a+biz = a + bi

z=?|z| = ?

z=a2+b2[1] \Rightarrow |z| = \sqrt{a^2 + b^2} \quad [1]

z=?\overline{z} = ?

z=abi\overline{z} = a - bi

z=?|\overline{z}| = ?

z=a2+(b)2 \Rightarrow |\overline{z}| = \sqrt{a^2 + (-b)^2}

z=a2+b2[2]|\overline{z}|= \sqrt{a^2 + b^2} \quad [2]

SKIP

z=zfrom [1] and [2] \therefore |z| = |\overline{z}| \quad \text{from [1] and [2]}

Prove That zz=z2z\overline{z} = |z|^2

SKIP

z=a+biz = a + bi

z=?\overline{z} = ?

z=abi\overline{z} = a - bi

zz=?z \cdot \overline{z} = ?

zz=(a+bi)(abi)z \cdot \overline{z} = (a + bi)(a - bi)

zz=a2b2i2z \cdot \overline{z}= a^2 - b^2i^2

zz=a2+b2[1]z \cdot \overline{z}= a^2 + b^2 \quad [1]

z=?|z| = ?

z=a2+b2[1] \Rightarrow |z| = \sqrt{a^2 + b^2} \quad [1]

SKIP

Squaring both sides

z2=?|z|^2 = ?

z2=a2+b2[2] \Rightarrow |z|^2 = a^2 + b^2 \quad [2]

SKIP

zz=z2from [1] and [2] \therefore z \cdot \overline{z} = |z|^2 \quad \text{from [1] and [2]}

Prove That (z1z2)=z1z2\overline{\left(\dfrac{z_1}{z_2}\right)} = \dfrac{\overline{z_1}}{\overline{z_2}}

SKIP

z1=a+bi,z2=c+diz_1 = a + bi, \quad z_2 = c + di

SKIP

Let's find z1z2\dfrac{z_1}{z_2}

z1z2=a+bic+di\dfrac{z_1}{z_2} = \dfrac{a+bi}{c+di}

=a+bic+dicdicdi = \dfrac{a + bi}{c + di} \cdot \dfrac{c - di}{c - di}

=(a+bi)(cdi)(c+di)(cdi)= \dfrac{(a+bi)(c-di)}{(c+di)(c-di)}

=acbdi2+bciadic2d2i2= \dfrac{ac - bdi^2 + bci - adi}{c^2 - d^2i^2}

=(ac+bd)+(bcad)ic2+d2= \dfrac{(ac + bd) + (bc - ad)i}{c^2 + d^2}

=ac+bdc2+d2+ibcadc2+d2= \dfrac{ac + bd}{c^2+d^2} + i\dfrac{bc - ad}{c^2 + d^2}

SKIP

L.H.S=(z1z2)L.H.S = \overline{\left(\dfrac{z_1}{z_2}\right)}

=ac+bdc2+d2+ibcadc2+d2= \overline{\dfrac{ac + bd}{c^2+d^2} + i\dfrac{bc - ad}{c^2 + d^2}}

=ac+bdc2+d2ibcadc2+d2=L.H.S[1]= \dfrac{ac + bd}{c^2+d^2} - i\dfrac{bc - ad}{c^2 + d^2} = L.H.S \quad \quad [1]

SKIP

Moving to the right hand side.

SKIP

R.H.S=z1z2R.H.S = \dfrac{\overline{z_1}}{\overline{z_2}}

=abicdi = \dfrac{a-bi}{c-di}

=abicdic+dic+di = \dfrac{a-bi}{c-di} \cdot \dfrac{c+di}{c+di}

=(abi)(c+di)(cdi)(c+di) = \dfrac{(a-bi)(c+di)}{(c-di)(c+di)}

=acbdi2+adibcic2d2i2 = \dfrac{ac - bdi^2 +adi - bci}{c^2 - d^2i^2}

=(ac+bd)+i(adbc)c2+d2 = \dfrac{(ac + bd) +i(ad - bc)}{c^2 + d^2}

=ac+bdc2+d2+iadbcc2+d2= \dfrac{ac + bd}{c^2+d^2} + i\dfrac{ad- bc}{c^2 + d^2}

=ac+bdc2+d2ibcadc2+d2=R.H.S[2]= \dfrac{ac + bd}{c^2+d^2} - i\dfrac{bc - ad}{c^2 + d^2} = R.H.S \quad [2]

SKIP

From [1][1] and [2][2]

SKIP

(z1z2)=z1z2\Rightarrow \overline{\left(\dfrac{z_1}{z_2}\right)}= \dfrac{\overline{z_1}}{\overline{z_2}}

Prove That z1z2=z1z2|z_1 z_2| = |z_1| |z_2|

SKIP

z1=a+bi,z2=c+diz_1 = a + bi, \quad z_2 = c + di

SKIP

We want to prove that z1z2=z1z2|z_1 z_2| = |z_1| |z_2|

SKIP

L.H.S=z1z2L.H.S = |z_1 z_2|

First, let's find z1z2=(a+bi)(c+di)z_1 z_2 = (a + bi)(c + di)

=ac+adi+bci+bdi2= ac + adi + bci + bdi^2

=ac+adi+bcibd= ac + adi + bci - bd

=(acbd)+(ad+bc)i= (ac - bd) + (ad + bc)i

z1z2=(acbd)+(ad+bc)i|z_1 z_2| = |(ac - bd) + (ad + bc)i|

=(acbd)2+(ad+bc)2= \sqrt{(ac - bd)^2 + (ad + bc)^2}

=a2c22abcd+b2d2+a2d2+2abcd+b2c2= \sqrt{a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2}

=a2c2+b2d2+a2d2+b2c2= \sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2}

=a2c2+a2d2+b2c2+b2d2= \sqrt{a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2}

=a2(c2+d2)+b2(c2+d2)= \sqrt{a^2(c^2 + d^2) + b^2(c^2 + d^2)}

=(a2+b2)(c2+d2)= \sqrt{(a^2 + b^2)(c^2 + d^2)}

=a2+b2c2+d2=L.H.S[1]= \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2} = L.H.S \quad [1]

SKIP

Now let's evaluate the right hand side.

SKIP

R.H.S=z1z2R.H.S = |z_1| |z_2|

=a+bic+di= |a + bi| |c + di|

=a2+b2c2+d2= \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2}

=a2+b2c2+d2=R.H.S[2]= \sqrt{a^2 + b^2} \cdot \sqrt{c^2 + d^2} = R.H.S \quad [2]

SKIP

From [1][1] and [2][2]

SKIP

z1z2=z1z2\Rightarrow |z_1 z_2| = |z_1| |z_2|

SKIP

This completes the proof that the modulus of a product equals the product of the moduli.


End of Lesson

 Previous
Task 10 – Find Modulus (Polar Form)
Next
Addition on the Complex Plane